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1. Points A, B, C, and D lie on circle O. Point F lies on CD such that OF is perpendicular to CD, and point
E is the intersection of OF with AB. If AB = 8, CD = 6, EF = 1, and OF is perpendicular to AB, �nd the
radius of circle O.

Answer: 5.

Solution: Let r be the radius of the circle, and observe that AB and CD are parallel chords. There are two
possibilities: either they could be on the same side of O, or they could be on opposite sides of O.

If they are on opposite sides of O, let OE = h: then OF = 1−h. Since OA = OD = r, the Pythagorean
theorem gives h2 +42 = r2 and (1− h)2 +32 = r2. Subtracting the second equation from the �rst yields
(1− h)2 − h2 + 32 − 42 = 0, so −2h+ 1− 7 = 0 so that h = −3. This is impossible.

We conclude that the chords are on the same side of O. As before, let OE = h: then OF = h+1. Since
OA = OD = r, the Pythagorean theorem gives h2 + 42 = r2 and (h + 1)2 + 32 = r2. Subtracting the
second equation from the �rst yields (h + 1)2 − h2 + 32 − 42 = 0, so 2h + 1 − 7 = 0 hence h = 3, and
then r = 5.

2. Suppose a, b, and c are integers greater than 1 such that ab − c < 20 and ac − b < 15. Find the maximum
possible value for bc− a.

Answer: 253.

Solution: The �rst equation is equivalent to b <
20 + c

a
and the second equation is equivalent to ac+15 < b,

so the relations are collectively equivalent to ac− 15 < b <
20 + c

a
.

For a �xed a and c, there will be an integer b satisfying this relation if and only if ac − 14 <
20 + c

a
:

since ac− 15 and b are integers and ac− 15 < b, the smallest possible value for b would be ac− 14.

Thus we require ac − 14 <
20 + c

a
, which is equivalent to c <

14a+ 20

a2 − 1
=

14(a+ 1)

a2 − 1
+

6

a2 − 1
=

14

a− 1
+

6

a2 − 1
.

We observe that for �xed a, because b <
20 + c

a
, the largest possible value of c will give the biggest

possible upper bound on b, and hence give the largest possible value for bc − a. Thus, we only need to
compute the largest possible c.

If a = 2, the inequality gives c < 16 so the maximum is c = 15, giving a maximal b = 17 and the
maximum value of bc− a = 253.

If a ≥ 3, then we see that c <
14

2
+

6

8
=

31

4
, so the largest c could possibly be is 7. Then b <

20 + c

a
<

27

a
≤ 9, so the maximal b is at most 9. Then bc− a < 63, so the maximum does not occur with a ≥ 3.

We conclude that the maximum possible value is 253, with a = 2, b = 17, and c = 15.

Remark: Using c <
14a+ 20

a2 − 1
we can deduce b <

20 + c

a
<

14 + 20a

a2 − 1
, and then obtain the bound bc − a <

280 + 595a+ 280a2 + 2a3 − a5

(a2 − 1)2
. Using calculus, it can be shown that this function is decreasing for

a > 1, so the largest value of bc− a should occur for small a.
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3. Find tan−1

[√
2 sin(20◦) + sin(33◦) + sin(7◦)

2 sin(20◦)− sin(33◦)− sin(7◦)

]
. Express your answer in simplest form, in degrees.

Answer:
167

2
degrees.

Solution: For arbitrary x and y, we have√
2 sin(x) + sin(x+ y) + sin(x− y)√
2 sin(x)− sin(x+ y)− sin(x− y)

=

√
2 sin(x) + 2 sin(x) cos(y)√
2 sin(x)− 2 sin(x) cos(y)

=

√
2 + 2 cos(y)√
2− 2 cos(y)

=
2 |cos(y/2)|
2 |sin(y/2)|

= |cot(y/2)| .

Here, x = 20◦ and y = 13◦, so the given expression is tan−1

[
cot(

13

2

◦
)

]
= 90◦ − 13

2

◦
=

167

2
degrees .

4. A dart is thrown at a triangular dartboard with vertices (−1, 3), (0,−3), and (2, 2), and lands at a random
position on the dartboard. Find the probability that the dart is closer to the origin than to any of the three
vertices of the dartboard.

Answer:
49067

90440
.

Solution: We use coordinates. The three sides of the triangle have equations y = −6x − 3, y = −1

3
x +

8

3
,

and y =
5

2
x− 3, respectively.

Also, observe that the set of points equidistant from the origin and (a, b) is the perpendicular bisector,

which has equation y = −a

b
x+

a2 + b2

2b
.

We see that the three perpendicular bisectors have equations y =
1

3
x +

5

3
, y = −3

2
, and y = −x + 2.

Plotting these lines along with the sides of the triangle shows that the desired region is a pentagon:
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Computing the intersections of the appropriate lines yields that the vertices of the pentagon are (in

counterclockwise order) equal to

(
10

7
,
4

7

)
,

(
1

4
,
7

4

)
,

(
−14

19
,
27

19

)
,

(
−1

4
,−3

2

)
, and

(
3

5
,−3

2

)
.



We then compute the area of this pentagon using the �shoelace formula�: this gives A =
1

2
c1−

1

2
c2, where

c1 =

[
10

7
· 7
4
+

1

4
· 27
19

+

(
−14

19

)
·
(
−3

2

)
+

(
−1

4

)
·
(
−3

2

)
+

3

5
· 4
7

]
=

24889

5320

c2 =

[
1

4
· 4
7
+

(
−14

19

)
· 7
4
+

(
−1

4

)
· 27
19

+
3

5
·
(
−3

2

)
+

10

7
·
(
−3

2
)

)]
= −1727

380

This yields A =
49067

10640
. Since the area of the triangle is

17

2
(computed in the same way), the desired

probability is
A

17/2
=

49067

90440
.

5. We say that a positive integer k is �3-special� if it has a divisor that a distance of less than 3 from
√
k. For

example, 2016 is 3-special: 42 divides 2016, and the distance between 42 and
√
2016 ≈ 44.90 is less than 3.

Prove that there exist seven polynomials p1(n), p2(n), ... , p7(n) such that an integer k ≥ 200 is 3-special if
and only if there exist some integers i and n with 1 ≤ i ≤ 7 and k = pi(n).

Solution: We claim that the desired result holds for the polynomials p1(n) = n2, p2(n) = n(n+ 1), p3(n) =
n(n+ 2), p4(n) = n(n+ 3), p5(n) = n(n+ 4), p6(n) = n(n+ 5), and p7(n) = n(n+ 6).

Observe that for any positive d, we have
√
n(n+ d) < n+

d

2
, so for each d with 0 ≤ d ≤ 6, we see that

k = n(n+ d) is 3-special with special divisor n.

Now suppose k is a 3-special integer with a divisor n within 3 of
√
k. If n >

√
k, then

k

n
is also a divisor

of k, and we claim that it is also within 3 of
√
k: otherwise, we would have k = n· k

n
< (
√
k+3)(

√
k−3) =

k − 9, which is impossible.

So (by interchanging n and
k

n
if necessary) we may assume without loss of generality that n ≤

√
k. Then

since
k

n
is also an integer, we must have

k

n
= n+ d for some integer d, which is to say, k = n(n+ d).

It remains to show that if k ≥ 200, then k = n(n + d) cannot be 3-special with 3-special divisor n for

any d ≥ 7. This would require n(n+ d) < (n+3)2 = n2 +6n+9, meaning that n <
9

d− 6
< 9, and then

k < (n+ 3)2 ≤ 121.

Hence, we conclude that an integer k ≥ 200 is 3-special if and only if it is of the form n(n+ d) for some
integer n and some integer d with 0 ≤ d ≤ 6.

Remark: In fact, by working through the exceptions to the argument given at the end, it can be shown that
the only 3-special numbers not given by any of the seven listed polynomials are 11, 13, 22, 33, 44, 78,
and 98.

6. Ten fair six-sided dice are rolled. The probability that no subset of six of these dice have a sum divisible by

6 is
N

610
. Compute the value of N .

Answer: 1512.

Solution 1: Call a set of 6 dice whose sum is divisible by 6 a �6-set�. We start by analyzing subsets of 3 dice
whose sum is divisible by 3: call such dice a �3-set�.

Suppose we have a set of 10 dice containing no 6-sets, and consider the possible distributions of the rolls
into the three residue classes 0 mod 3, 1 mod 3, and 2 mod 3. Observe that three dice form a 3-set if
they are all in the same class, or all in di�erent classes.

If there are 7 dice d1, d2, ... , d7 in a single class, then any subset of 6 of them has sum divisible by
3. Since {d1, d2, · · · , d6} is not a 6-set, its sum must be odd. But {d1, · · · , d5, d7} is also not a 6-set,
meaning that its sum is also odd: thus, d6 and d7 must either be both even or both odd. Repeating this
argument shows that all the dice are either even or odd, but this is impossible because then the sum of
any six of them would be even, hence any six of them would form a 6-set.

We conclude there are at most 6 dice in any residue class mod 3.



Now we notice that if there are 3 disjoint 3-sets, since each 3-set either has even or odd sum, two of them
must be the same, and then this set of 6 dice would have sum divisible by 6.

So now suppose there are two or fewer disjoint 3-sets. There is now a small number of possibilities for
the distribution of dice among the residue classes modulo 3:

6-4-0 or 6-3-0: There are two 3-0-0 sets and one 0-3-0 set.

6-2-2: There is one 3-0-0 set and two 1-1-1 sets.

5-4-1: There is one 3-0-0 set, one 0-3-0 set, and one 1-1-1 set.

5-3-2: There is one 3-0-0 set and two 1-1-1 sets.

4-4-2: There is one 3-0-0 set, one 0-3-0 set, and one 1-1-1 set.

4-3-3: There is one 3-0-0 set, one 0-3-0 set, and one 0-0-3 set.

The only remaining possibility is 5-5-0: �ve dice in one residue class mod 3 and �ve in another.

Now consider any collection of 3 dice from the �rst residue class and 3 dice from the second residue class:
these dice must have odd sum, else they would be a 6-set. This is true for every subcollection of 3 dice
from each residue class, so all 5 dice in the �rst class must either be even or odd, and the same holds for
all 5 dice in the second class. We conclude that the 10 dice must break up into two sets of �ve identical
rolls, where the rolls are di�erent mod 3 and have odd sum.

There are only six ways for this to happen: the sets could be 1-2, 2-3, 3-4, 4-5, 5-6, or 6-1. Hence, the
probability is 6 ·

(
10
5

)
/610, so N = 6 ·

(
10
5

)
= 1512 .

Solution 2: Observe that if we add 1 to the result of each die throw (wrapping 6 around to 1), the new set
of dice will have the desired property if and only if the old set of dice does. So it is su�cient to break
into cases based on the number of times M that the most common die roll occurs, and (by shifting if
necessary) we can assume the most common roll is any desired value.

(a) M ≥ 6: In this case, we clearly have a 6-set.

(b) M = 5 or M = 4: Assume the most common roll is a 6. No sum of 2 or more other dice can be
divisible by 6, so we cannot have more than �ve 5s, two 4s, one 3, two 2s, or �ve 1s.

i. Suppose there is a 2 or 4: then there is only one 2/4, and at most one 5, one 3, and three 1s, so
there is at least one 1. Then there is no 5, and there cannot also be both a 3 and three 1s, so
there are at most four non-sixes, which is impossible.

ii. Suppose there is a 3: then there are at most two 5s, two 4s, two 2s, and two 1s. The presence of
any die will exclude two of the others (for example, a 5 excludes a 4 and a 1), which is impossible
since there are not enough dice left.

iii. If there is no 2, 3, or 4, then all the dice are 1, 5, or 6. There cannot be both a 1 and a 5, so
there are at most �ve dice that are not 6s. The only possibility is M = 5, with �ve 1s or �ve 5s,
both of which work.

(c) M = 3: Again, assume the most common roll is a 6. No sum of 3 or more other dice can be divisible
by 6, so we cannot have more than three 5s, two 4s, three 3s, two 2s, or three 1s.

i. Suppose there is a 3: then there cannot be both a 4 and 5, nor both a 2 and 1, and there can be
at most two 5s and at most two 1s. Thus there are at most two dice among the 4s and 5s, and
at most two dice among the 1s and 2s. There are at most three 3s and three 6s, meaning that to
get ten dice, there must be three 3s, and two pairs among the 1s, 2s, 4s, and 5s. However, this
does not work, because with three 3s and three 6s, having any pair of 1, 2, 4, or 5 will exclude
the other three.

ii. Now assume there are no 3s. Consider the pairs {1,4} and {2,5}: since there are seven dice total
among these two sets, one set must have at least four dice. Suppose it is {1,4}: since there are
at most two 4s and at most three 1s, there are at least two 1s and one 4: but then 6-6-6-4-1-1 is
a 6-set. If the set is {2,5}, then by a similar argument, there is a 6-set given by 6-6-6-5-5-2.

(d) M = 2: In this case, each of the six outcomes occurs at most twice. If we have 1 of each die roll,
then by making 6 the most common die, we see that 1-2-4-5-6-6 is a 6-set. Otherwise, there must
be �ve die rolls that each appear twice. By shifting cyclically, assume that there are no ones: then
2-3-4-4-5-6 is a 6-set.

Thus, the only possibilities with 6 being the most common roll are �ve 6s and either �ve 1s or �ve 5s. Shifting
cyclically yields the same results and count as in the �rst solution.


