Talent Search Test 4 Solutions February 2014

Problem 1.

In triangle ABC, AC = 7. D lies on AB such that AD = BD = CD = 5. Find BC.

Answer: $\sqrt{51}$.

Solution: Let $m \angle A = x$ and $m \angle B = y$. Note that we have two pairs of isosceles triangles, so $m \angle A = m \angle ACD$ and $m \angle B = m \angle BCD$. Since $m \angle ACD + m \angle BCD = m \angle ACB$, we have $180^\circ = m \angle A + m \angle B + m \angle ACB = 2x + 2y$, hence $m \angle ACB = x + y = 90^\circ$. Since $\angle ACB$ is right, we can use the Pythagorean Theorem to compute BC as $\sqrt{10^2 - 7^2} = \sqrt{51}$. Note: for a shortcut, note that *D* is the circumcenter of *ABC* and lies on the triangle itself, so it must lie opposite a right angle.

Problem 2.

The increasing sequence $S = \{2, 3, 5, 6, 7, 10, 11, ...\}$ consists of all positive integers which are neither a perfect square nor a perfect cube. What is the 2014th term of S?

Answer: 2068

Solution. Clearly the required term *n* is unique and greater than 2014. Since the squares and cubes thin out as they increase, *n* is not likely to be very much greater than 2014. In fact the number of squares less than 2014 is $44 (44^2 = 1936)$ and the number of cubes is only $12 (12^3 = 2197)$. Thus, up to 2014 not more than 56 positive integers have failed to qualify for membership in *S*. Actually, since the sixth powers 1 and 64 are both squares and cubes, only 54 positive integers < 2014 are not in *S*, making 2014 itself the 1960th term in *S*. Advancing 54 terms from 2014 would take us to 2068. The 2014th term of *S* is 2068.

Problem 3.

Let $N = 6 + 66 + 666 + \dots + \underbrace{666 \dots 6}_{2014 \text{ G's}}$ where the last number has 2014 sixes. What is the sum of the digits of 27N?

Answer: 18117

Solution. Call the required sum S_{2014} , so that for $n \ge 2$

$$S_{2014} = 6 + 66 + 666 + \dots + \underbrace{666 \dots 6}_{2014 6's}$$

= (0 + 6) + (60 + 6) + (660 + 6) + \dots + (666 \dots 60 + 6))
= 10 \left(6 + 66 + \dots + \underbrace{666 \dots 6}_{2014 - 1 6's} \right) + 6(2014)
= 10 S_{2014 - 1} + 6n
= 10 \left(S_{2014} - \underbrace{666 \dots 6}_{2014 6's} \right) + 6(2014)

Solving for S_{2014} , we obtain $9S_{2014} = \underbrace{666\cdots 6}_{2014 \ 6's} 0 - 6(2014) = \frac{2}{3}(999\cdots 90 - 9(2014)),$

$$S_{2014} = \frac{2}{3} \left(\underbrace{111 \cdots 1}_{2014 \text{ l's}} 0 - 2014 \right)$$

Since $\underbrace{111\cdots 1}_{2014 \text{ I's}} 0 = 10 + 10^2 + \dots + 10^{2014} = \frac{10(10^{2014}-1)}{9}$, we may write $S_{2014} = \frac{2}{3} \left(\frac{10^{2014}(10^{2014}-1)}{9} - 2014 \right) = \frac{2}{27} (10^{2014+1} - 10 - 9(2014))$

Multiplying by 27 we get $S_{2014} = 2(10^{2015} - 10 - 9(2014)) = 2(10^{2015} - 18136))$. This leads to

 $\underbrace{200\cdots0}_{2015\ 0's} - 36272 = 1\underbrace{999\cdots9}_{2010\ 9's} 63728.$ The sum of the digits is $1 + 2010 \cdot 9 + 6 + 3 + 7 + 2 + 8 = 18117.$

Problem 4.

Find all real x for which $1 + \sqrt{x+1} + \sqrt{2x+1} = \sqrt{7x+1}$.

Answer: 24

Solution: Rearranging yields $1 + \sqrt{x+1} = \sqrt{7x+1} - \sqrt{2x+1}$. Squaring both sides yields;

$$x + 2 + 2\sqrt{x+1} = 9x + 2 - 2\sqrt{(7x+1)(2x+1)}$$
$$\sqrt{x+1} + \sqrt{(7x+1)(2x+1)} = 4x$$

Squaring both sides again yields;

$$(x+1) + (7x+1)(2x+1) + 2\sqrt{(x+1)(7x+1)(2x+1)} = 16x^2$$
$$\sqrt{(x+1)(7x+1)(2x+1)} = x^2 - 5x - 1$$

Squaring both sides yet again yields;

$$(x+1)(7x+1)(2x+1) = (x^2 - 5x - 1)^2$$

Rearranging gives:

$$x^4 - 24x^3 = 0$$

So x = 0 (which is extraneous), or x = 24.

Problem 5.

In isosceles triangle ABC the base angles at B and C are 40°. The bisector of angle B meets AC at D and BD is extended to E so that DE = AD (see figure below). How big is $\angle E$?

Answer: 80 degrees

Solution. Since $\angle ADB$ is an exterior angle of $\triangle DBC$, we have

 $\angle ADB = \angle DBC + \angle DCB = 20^{\circ} + 40^{\circ} = 60^{\circ}.$

Because BD bisects angle B, reflecting A in BD would take it to a point F on BC (see figure below).

AD would carry to DF and $\angle ADB$ to $\angle BDF$. Hence FD = AD = DE, and $\angle BDF = 60^{\circ}$. Since ADC is a straight angle, $\angle FDC$ is also 60°, and then, similarly, $\angle EDC$ is yet another 60° angle.

Hence, $\triangle DFC \equiv \triangle DEC$ (SAS), and $\angle E = \angle DFC = 180^{\circ} - 60^{\circ} - 40^{\circ} = 80^{\circ}$.

Problem 6.

Find the smallest positive integer k such that k^3 ends in the digits 111111 (in base 10).

Answer: 288,471

Solution: The only single-digit cube which ends in a 1 is 1. Next, if $(10a + 1)^3 = 11mod100$, then expanding yields $30a + 1 \equiv 11mod100$, so a = 7. Then if $(100b + 71)^3 \equiv 111mod1000$, expanding yields $300b + 911 \equiv 111mod1000$, so b = 4. Continuing yields $(1000c + 471)^3 \equiv 1111mod10000$, so $3000c + 7111 \equiv 1111mod10000$ hence c = 8. Next, $(10000d + 8471)^3 \equiv 1111mod100000$, so $30000d + 71111 \equiv 1111mod100000$, hence d = 8. Finally, $(10000e + 88471)^3 \equiv 11111mod1000000 \equiv 300000e + 511111$, so $e \equiv 2mod10$. Hence the smallest positive k is 288471.

Problem 7.

Let $S = \{a, b, c, d, e, f\}$. Find the value of

$$\sum_{A\subseteq S}\sum_{B\subseteq S}|A\cap B|$$

where each sum runs over all subsets of S, and |H| denotes the number of elements in the set H.

Answer: 6144

Solution: Let *S* be a set with *n* elements and suppose we choose each of *A* and *B* randomly from the 2^n subsets of *S*: the probability that any given element will be in the intersection is $\frac{1}{4}$, since the probability that it is in *A* is $\frac{1}{2}$ and (independently) the probability that it is in *B* is also $\frac{1}{2}$. Therefore, by the linearity of expectation, the expected number of elements in the intersection is $\frac{n}{4}$, so the total sum is $2^n \cdot 2^n \cdot \frac{n}{4} = n \cdot 4^{n-1}$. In the given problem n = 6, so the answer is $6 \cdot 4^5 = 6144$.

Problem 8.

Find the number of complex numbers $z \neq 0,1$ such that z, z^2 , and z^4 form an equilateral triangle in the complex plane.

Answer: 4

Solution: Suppose the distinct complex numbers *a*, *b*, and *c* form an equilateral triangle. If we translate the coordinate system so that *a* is at the origin, then we have the three numbers 0, b - a, c - a that still form an equilateral triangle. If we think of b - a and c - a as vectors pointing outward from the origin, the triangle is equilateral precisely when one vector is given by rotating the other by $\frac{\pi}{3}$ radians. Since counterclockwiserotation by $\frac{\pi}{3}$ corresponds to multiplying by the complex number $e^{(i\pi/3)} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, we see that *a*, *b*, and *c* form an equilateral triangle if and only if $\frac{c-a}{b-a} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ or $\frac{c-a}{b-a} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$. Thus we require $\frac{z^4-z^2}{z-z^2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$; simplifying yields $-(z + z^2) = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. Thus we see that there are 4 solutions for *z*, which are given approximately by $z \approx -1.0707 \pm 0.7587i$ and $z \approx 0.0707 \pm 0.7587i$.

Note: One can solve explicitly for the four values of z, but the results are somewhat unpleasant. Explicitly, the solutions are given by $z = \frac{1}{24} \left(\pm 12 + \sqrt{78(1 + \sqrt{13})} - \sqrt{6(1 + \sqrt{3})} \pm 6i\sqrt{2(1 + \sqrt{13})} \right)$, where the four choices of the \pm are independent.