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Problem 1. 

Given the array of letters shown, find the number of ways that the sequence C-A-R-R-O-L-L can 
be obtained if consecutive letters in the word are a single horizontal, vertical, or diagonal move 
away from each other. 

 

 

 

         Answer: ____________ 

  

O L L L L L O 
L R R R R R L 
L R A A A R L 
L R A C A R L 
L R A A A R L 
L R R R R R L 
O L L L L L O 

An example is shown on the 
grid. 



Problem 2. 

Three non-overlapping semicircles of radius 1 are contained in a 1𝑥 𝑑 rectangle. Find the 
smallest possible value for d. 

 

         Answer: ____________ 

Problem 3. 

How many different 3 x 3 arrays of non-negative integers are able to be constructed such that 
each of the three horizontal sums and each of the three vertical sums is equal to 7, and the sums 
on the two major diagonals are 9 and 10.  

             

         Answer: ____________ 

Problem 4. 

If the parabola 𝑦 = 𝑥2 − 𝑐 intersects the circle 𝑥2 + 𝑦2 = 𝑐2in three distinct points forming an 
equilateral triangle, find all possible values of c. 

        Answer: ____________ 

Problem 5. 

The figure below shows a street plan of twelve square blocks. A person P goes from point A to 
point B, and a second person Q goes from B to A. Both of them (P and Q) leave at the same time 
with the same speed, following shortest paths on the grid. At each corner they choose among the 
possible streets with equal probability. What is the probability that P meets Q? 

 

    
    
    

 

 

        Answer: ____________ 

  

  A 

 B 



Problem 6. 

For a positive number such as 3.14, we call 3 the integer part, and 0.14 the fractional part.  Find 
a positive number such that the fractional part, the integer part, and the number itself are three 
consecutive terms 

a. In an arithmetic sequence 
b. In a geometric sequence. 

         Answer: a) ____________ 

 

                b) ____________ 

Problem 7. 

Suppose we roll 𝑁 ≥ 3 standard 6-sided dice. What value(s) of N will maximize the probability 
of obtaining exactly three threes?

        Answer: ____________ 

Problem 8. 

Find all x,  0 ≤ 𝑥 ≤ 𝜋, for which cos(𝑥) ∙ cos(2𝑥) ∙ cos(4𝑥) = 1
8
. 

         Answer: ____________ 


